login
A325592
Triangle read by rows where T(n,k) is the number of length-k knapsack partitions of n.
9
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 3, 2, 0, 0, 1, 0, 1, 3, 4, 2, 0, 0, 1, 0, 1, 4, 3, 3, 0, 0, 0, 1, 0, 1, 4, 7, 2, 2, 0, 0, 0, 1, 0, 1, 5, 6, 4, 2, 0, 0, 0, 0, 1, 0, 1, 5, 10, 6, 4, 2, 0, 0, 0, 0, 1, 0, 1, 6, 9, 5, 1, 2, 0, 0, 0, 0, 0, 1
OFFSET
0,13
COMMENTS
A knapsack partition of n is an integer partition of n whose distinct submultisets all have different sums.
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..10010
EXAMPLE
Triangle begins:
1
0 1
0 1 1
0 1 1 1
0 1 2 0 1
0 1 2 2 0 1
0 1 3 2 0 0 1
0 1 3 4 2 0 0 1
0 1 4 3 3 0 0 0 1
0 1 4 7 2 2 0 0 0 1
0 1 5 6 4 2 0 0 0 0 1
0 1 5 10 6 4 2 0 0 0 0 1
0 1 6 9 5 1 2 0 0 0 0 0 1
0 1 6 14 10 5 2 2 0 0 0 0 0 1
0 1 7 13 11 3 3 2 0 0 0 0 0 0 1
0 1 7 19 16 7 3 2 2 0 0 0 0 0 0 1
Row n = 12 counts the following partitions (A = 10, B = 11, C = 12):
(C) (66) (444) (3333) (81111) (222222) (111111111111)
(75) (543) (5511) (711111)
(84) (552) (7221)
(93) (732) (7311)
(A2) (741) (9111)
(B1) (822)
(831)
(921)
(A11)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n, {k}], UnsameQ@@Total/@Union[Subsets[#]]&]], {n, 0, 15}, {k, 0, n}]
CROSSREFS
Row sums are A000041.
Column k = 2 is A004526.
Column k = 3 is A325690.
Sequence in context: A035698 A230204 A372646 * A161502 A279628 A241914
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, May 15 2019
STATUS
approved