login
A324315
Squarefree integers m > 1 such that if prime p divides m, then the sum of the base p digits of m is at least p.
15
231, 561, 1001, 1045, 1105, 1122, 1155, 1729, 2002, 2093, 2145, 2465, 2821, 3003, 3315, 3458, 3553, 3570, 3655, 3927, 4186, 4199, 4522, 4774, 4845, 4862, 5005, 5187, 5565, 5642, 5681, 6006, 6118, 6270, 6279, 6545, 6601, 6670, 6734, 7337, 7395, 7735, 8177, 8211, 8265, 8294, 8323, 8463, 8645, 8789, 8855, 8911, 9282, 9361, 9435, 9690, 9867
OFFSET
1,1
COMMENTS
The sequence is infinite, because it contains all Carmichael numbers (A002997).
If m is a term and p is a prime factor of m, then p <= a*sqrt(m) with a = sqrt(11/21) = 0.7237..., where the bound is sharp.
A term m must have at least 3 prime factors if m is odd, and must have at least 4 prime factors if m is even.
m is a term if and only if m > 1 divides denominator(Bernoulli_m(x) - Bernoulli_m) = A195441(m-1).
A term m is a Carmichael number iff s_p(m) == 1 (mod p-1) whenever prime p divides m, where s_p(m) is the sum of the base p digits of m.
See Kellner and Sondow 2019.
LINKS
Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017.
Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, #A52 Integers 21 (2021), 21 pp.; arXiv:1902.10672 [math.NT], 2019.
FORMULA
a_1 + a_2 + ... + a_k >= p for m = a_1 * p + a_2 * p^2 + ... + a_k * p^k with 0 <= a_i <= p-1 for i = 1, 2, ..., k (note that a_0 = 0).
EXAMPLE
231 = 3 * 7 * 11 is squarefree, and 231 in base 3 is 22120_3 = 2 * 3^4 + 2 * 3^3 + 1 * 3^2 + 2 * 3 + 0 with 2+2+1+2+0 = 7 >= 3, and 231 = 450_7 with 4+5+0 = 9 >= 7, and 231 = 1a0_11 with 1+a+0 = 1+10+0 = 11 >= 11, so 231 is a member.
MATHEMATICA
SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
LP[n_] := Transpose[FactorInteger[n]][[1]];
TestS[n_] := (n > 1) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] >= # &];
Select[Range[10^4], TestS[#] &]
PROG
(Python)
from sympy import factorint
from sympy.ntheory import digits
def ok(n):
pf = factorint(n)
if n < 2 or max(pf.values()) > 1: return False
return all(sum(digits(n, p)[1:]) >= p for p in pf)
print([k for k in range(10**4) if ok(k)]) # Michael S. Branicky, Jul 03 2022
KEYWORD
nonn,base
AUTHOR
STATUS
approved