OFFSET
1,1
COMMENTS
The sequence is infinite, because it contains all Carmichael numbers (A002997).
If m is a term and p is a prime factor of m, then p <= a*sqrt(m) with a = sqrt(11/21) = 0.7237..., where the bound is sharp.
A term m must have at least 3 prime factors if m is odd, and must have at least 4 prime factors if m is even.
m is a term if and only if m > 1 divides denominator(Bernoulli_m(x) - Bernoulli_m) = A195441(m-1).
A term m is a Carmichael number iff s_p(m) == 1 (mod p-1) whenever prime p divides m, where s_p(m) is the sum of the base p digits of m.
See Kellner and Sondow 2019.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017.
Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, #A52 Integers 21 (2021), 21 pp.; arXiv:1902.10672 [math.NT], 2019.
FORMULA
a_1 + a_2 + ... + a_k >= p for m = a_1 * p + a_2 * p^2 + ... + a_k * p^k with 0 <= a_i <= p-1 for i = 1, 2, ..., k (note that a_0 = 0).
EXAMPLE
231 = 3 * 7 * 11 is squarefree, and 231 in base 3 is 22120_3 = 2 * 3^4 + 2 * 3^3 + 1 * 3^2 + 2 * 3 + 0 with 2+2+1+2+0 = 7 >= 3, and 231 = 450_7 with 4+5+0 = 9 >= 7, and 231 = 1a0_11 with 1+a+0 = 1+10+0 = 11 >= 11, so 231 is a member.
MATHEMATICA
SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
LP[n_] := Transpose[FactorInteger[n]][[1]];
TestS[n_] := (n > 1) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] >= # &];
Select[Range[10^4], TestS[#] &]
PROG
(Python)
from sympy import factorint
from sympy.ntheory import digits
def ok(n):
pf = factorint(n)
if n < 2 or max(pf.values()) > 1: return False
return all(sum(digits(n, p)[1:]) >= p for p in pf)
print([k for k in range(10**4) if ok(k)]) # Michael S. Branicky, Jul 03 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Bernd C. Kellner and Jonathan Sondow, Feb 21 2019
STATUS
approved