OFFSET
1,1
COMMENTS
This is in some sense the nontrivial part of A160350: Indeed, Kaplan (2007) has shown that Phi[pqr] has coefficients in {0,1,-1} if r = +-1 (mod pq), where p<q<r are primes. Here we list the odd elements of A160350 (i.e. of A117223) which do not satisfy this equality (i.e. which are not in A160353).
See A160350 for further details and references.
LINKS
Robin Visser, Table of n, a(n) for n = 1..10000
EXAMPLE
a(1)=231=3*7*11 is the smallest "nontrivial" element of A160350 in the sense that it is neither of the form 2pq, and that its largest factor (11) is not congruent to +- 1 modulo the product of the smaller factors (3*7).
PROG
(PARI) forstep( pqr=1, 5999, 2, my(f=factor(pqr)); #f~==3 & vecmax(f[, 2])==1 & abs((f[3, 1]+1)%(f[1, 1]*f[2, 1])-1)!=1 & vecmax(abs(Vec(polcyclo(pqr))))==1 & print1(pqr", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, May 11 2009
STATUS
approved