login
A321750
Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of m(v) in p(u), where H is Heinz number, m is monomial symmetric functions, and p is power sum symmetric functions.
9
1, 1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 3, 6, 1, 2, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 6, 4, 12, 24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,6
COMMENTS
Row n has length A000041(A056239(n)).
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
Triangle begins:
1
1
1 0
1 2
1 0 0
1 1 0
1 0 0 0 0
1 3 6
1 2 0 0 0
1 0 1 0 0
1 0 0 0 0 0 0
1 2 2 2 0
1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 6 4 12 24
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 2 2 0 0 0
For example, row 18 gives: p(221) = m(5) + 2m(32) + m(41) + 2m(221).
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Nov 20 2018
STATUS
approved