login
A320764
Number of ordered set partitions of [n] where the maximal block size equals eight.
2
1, 18, 360, 7260, 152460, 3361644, 78041964, 1908389340, 49118959890, 1328964080730, 37738620245898, 1122927974067042, 34953464391146730, 1136306352798186570, 38520124906043253330, 1359621561034260858906, 49896547074800880656202, 1901350452285623246965200
OFFSET
8,2
LINKS
FORMULA
E.g.f.: 1/(1-Sum_{i=1..8} x^i/i!) - 1/(1-Sum_{i=1..7} x^i/i!).
a(n) = A276928(n) - A276927(n).
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, add(
b(n-i, k)*binomial(n, i), i=1..min(n, k)))
end:
a:= n-> (k-> b(n, k) -b(n, k-1))(8):
seq(a(n), n=8..25);
CROSSREFS
Column k=8 of A276922.
Sequence in context: A230348 A366684 A182609 * A086502 A259459 A099276
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 20 2018
STATUS
approved