%I #4 Oct 20 2018 18:01:17
%S 1,18,360,7260,152460,3361644,78041964,1908389340,49118959890,
%T 1328964080730,37738620245898,1122927974067042,34953464391146730,
%U 1136306352798186570,38520124906043253330,1359621561034260858906,49896547074800880656202,1901350452285623246965200
%N Number of ordered set partitions of [n] where the maximal block size equals eight.
%H Alois P. Heinz, <a href="/A320764/b320764.txt">Table of n, a(n) for n = 8..425</a>
%F E.g.f.: 1/(1-Sum_{i=1..8} x^i/i!) - 1/(1-Sum_{i=1..7} x^i/i!).
%F a(n) = A276928(n) - A276927(n).
%p b:= proc(n, k) option remember; `if`(n=0, 1, add(
%p b(n-i, k)*binomial(n, i), i=1..min(n, k)))
%p end:
%p a:= n-> (k-> b(n, k) -b(n, k-1))(8):
%p seq(a(n), n=8..25);
%Y Column k=8 of A276922.
%Y Cf. A276927, A276928.
%K nonn
%O 8,2
%A _Alois P. Heinz_, Oct 20 2018