login
A320750
Array read by antidiagonals: T(n,k) is the number of color patterns (set partitions) in an unoriented row of length n using k or fewer colors (subsets).
9
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 6, 1, 1, 2, 4, 10, 10, 1, 1, 2, 4, 11, 25, 20, 1, 1, 2, 4, 11, 31, 70, 36, 1, 1, 2, 4, 11, 32, 107, 196, 72, 1, 1, 2, 4, 11, 32, 116, 379, 574, 136, 1, 1, 2, 4, 11, 32, 117, 455, 1451, 1681, 272, 1
OFFSET
1,5
COMMENTS
Two color patterns are equivalent if the colors are permuted.
In an unoriented row, chiral pairs are counted as one.
T(n,k) = Pi_k(P_n) which is the number of non-equivalent partitions of the path on n vertices, with at most k parts. Two partitions P1 and P2 of a graph G are said to be equivalent if there is a nontrivial automorphism of G which maps P1 onto P2. - Mohammad Hadi Shekarriz, Aug 21 2019
From Allan Bickle, Apr 05 2022: (Start)
The columns count unlabeled k-paths with n+k+2 vertices. (A k-path with order n at least k+2 is a k-tree with exactly two k-leaves (vertices of degree k). It can be constructed from a clique with k+1 vertices by iteratively adding a new degree k vertex adjacent to an existing clique containing an existing k-leaf.)
Recurrences for the columns appear in the papers by Bickle, Eckhoff, and Markenzon et al. (End)
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]
LINKS
B. Ahmadi, F. Alinaghipour and M. H. Shekarriz, Number of Distinguishing Colorings and Partitions, arXiv:1910.12102 [math.CO], 2019.
Allan Bickle, How to Count k-Paths, J. Integer Sequences, 25 (2022) Article 22.5.6.
Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
J. Eckhoff, Extremal interval graphs, J. Graph Theory 17 1 (1993), 117-127.
L. Markenzon, O. Vernet, and P. R. da Costa Pereira, A clique-difference encoding scheme for labelled k-path graphs, Discrete Appl. Math. 156 (2008), 3216-3222.
FORMULA
T(n,k) = Sum_{j=1..k} (S2(n,j) + Ach(n,j))/2, where S2 is the Stirling subset number A008277 and Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)).
T(n,k) = (A278984(k,n) + A305749(n,k)) / 2 = A278984(k,n) - A320751(n,k) = A320751(n,k) + A305749(n,k).
T(n,k) = Sum_{j=1..k} A284949(n,j).
EXAMPLE
Array begins with T(1,1):
1 1 1 1 1 1 1 1 1 1 1 ...
1 2 2 2 2 2 2 2 2 2 2 ...
1 3 4 4 4 4 4 4 4 4 4 ...
1 6 10 11 11 11 11 11 11 11 11 ...
1 10 25 31 32 32 32 32 32 32 32 ...
1 20 70 107 116 117 117 117 117 117 117 ...
1 36 196 379 455 467 468 468 468 468 468 ...
1 72 574 1451 1993 2135 2151 2152 2152 2152 2152 ...
1 136 1681 5611 9134 10480 10722 10742 10743 10743 10743 ...
1 272 5002 22187 43580 55091 58071 58461 58486 58487 58487 ...
1 528 14884 87979 211659 301633 333774 339764 340359 340389 340390 ...
For T(4,3)=10, the patterns are AAAA, AABB, ABAB, ABBA, ABBC, ABCA, AAAB, AABA, AABC, ABAC, the last four being chiral with partners ABBB, ABAA, ABCC, and ABCB.
MATHEMATICA
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]] (* A304972 *)
Table[Sum[StirlingS2[n, j] + Ach[n, j], {j, k-n+1}]/2, {k, 15}, {n, k}] // Flatten
CROSSREFS
Columns 1-7 are A000012, A005418, A001998(n-1), A056323, A056324, A056325, A345207.
As k increases, columns converge to A103293(n+1).
Cf. transpose of A278984 (oriented), A320751 (chiral), A305749 (achiral).
Partial column sums of A284949.
Sequence in context: A360334 A259799 A208447 * A117935 A224698 A179749
KEYWORD
nonn,tabl,easy
AUTHOR
Robert A. Russell, Oct 27 2018
STATUS
approved