login
A304972
Triangle read by rows of achiral color patterns (set partitions) for a row or loop of length n. T(n,k) is the number using exactly k colors (sets).
47
1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 5, 2, 1, 1, 7, 10, 9, 3, 1, 1, 7, 19, 16, 12, 3, 1, 1, 15, 38, 53, 34, 18, 4, 1, 1, 15, 65, 90, 95, 46, 22, 4, 1, 1, 31, 130, 265, 261, 195, 80, 30, 5, 1, 1, 31, 211, 440, 630, 461, 295, 100, 35, 5, 1, 1, 63, 422, 1221, 1700, 1696, 1016, 515, 155, 45, 6, 1, 1, 63, 665, 2002
OFFSET
1,8
COMMENTS
Two color patterns are equivalent if we permute the colors. Achiral color patterns must be equivalent if we reverse the order of the pattern.
LINKS
Juan B. Gil and Luiz E. Lopez, Enumeration of symmetric arc diagrams, arXiv:2203.10589 [math.CO], 2022.
FORMULA
T(n,k) = [n>1] * (k*T(n-2,k) + T(n-2,k-1) + T(n-2,k-2)) + [n<2 & n==k & n>=0].
T(2m-1,k) = A140735(m,k).
T(2m,k) = A293181(m,k).
T(n,k) = [k==0 & n==0] + [k==1 & n>0]
+ [k>1 & n==1 mod 2] * Sum_{i=0..(n-1)/2} (C((n-1)/2, i) * T(n-1-2i, k-1))
+ [k>1 & n==0 mod 2] * Sum_{i=0..(n-2)/2} (C((n-2)/2, i) * (T(n-2-2i, k-1)
+ 2^i * T(n-2-2i, k-2))) where C(n,k) is a binomial coefficient.
EXAMPLE
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 3, 2, 1;
1, 3, 5, 2, 1;
1, 7, 10, 9, 3, 1;
1, 7, 19, 16, 12, 3, 1;
1, 15, 38, 53, 34, 18, 4, 1;
1, 15, 65, 90, 95, 46, 22, 4, 1;
1, 31, 130, 265, 261, 195, 80, 30, 5, 1;
1, 31, 211, 440, 630, 461, 295, 100, 35, 5, 1;
1, 63, 422, 1221, 1700, 1696, 1016, 515, 155, 45, 6, 1
1, 63, 665, 2002, 3801, 3836, 3156, 1556, 710, 185, 51, 6, 1;
1, 127, 1330, 5369, 10143, 13097, 10508, 6832, 2926, 1120, 266, 63, 7, 1;
For T(4,2)=3, the row patterns are AABB, ABAB, and ABBA. The loop patterns are AAAB, AABB, and ABAB.
For T(5,3)=5, the color patterns for both rows and loops are AABCC, ABACA, ABBBC, ABCAB, and ABCBA.
MATHEMATICA
Ach[n_, k_] := Ach[n, k] = If[n < 2, Boole[n == k && n >= 0],
k Ach[n - 2, k] + Ach[n - 2, k - 1] + Ach[n - 2, k - 2]]
Table[Ach[n, k], {n, 1, 15}, {k, 1, n}] // Flatten
Ach[n_, k_] := Ach[n, k] = Which[0==k, Boole[0==n], 1==k, Boole[n>0],
OddQ[n], Sum[Binomial[(n-1)/2, i] Ach[n-1-2i, k-1], {i, 0, (n-1)/2}],
True, Sum[Binomial[n/2-1, i] (Ach[n-2-2i, k-1]
+ 2^i Ach[n-2-2i, k-2]), {i, 0, n/2-1}]]
Table[Ach[n, k], {n, 1, 15}, {k, 1, n}] // Flatten
PROG
(PARI)
Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
{ my(A=Ach(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 18 2019
CROSSREFS
Columns 1-6 are A057427, A052551(n-2), A304973, A304974, A304975, A304976.
A305008 has coefficients that determine the function and generating function for each column.
Row sums are A080107.
Sequence in context: A087284 A262311 A242950 * A152176 A152175 A321620
KEYWORD
nonn,tabl,easy
AUTHOR
Robert A. Russell, May 22 2018
STATUS
approved