login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320228
Distribute the primes into groups in ascending order, with the n-th group having prime(n) elements. Then a(n) is the sum of the numbers in the n-th group times the number of elements in the group.
1
10, 69, 505, 2177, 10241, 24635, 65875, 120631, 244789, 531715, 802063, 1464941, 2279887, 3065943, 4444273, 6747695, 9882205, 12447843, 17304961, 22371177, 26991677, 35679165, 44240245, 56968633, 75590451, 91181689, 104420885, 124020811, 141249939, 164746655
OFFSET
1,1
COMMENTS
On every step we sum prime(n) elements from the prime list and multiply the result by the number of elements of the sum.
LINKS
Christian Efrain Maldonado Sifuentes, Table of n, a(n) for n = 1..297
FORMULA
a(n) = A000040(n)*A034958(n). - Michel Marcus, Oct 08 2018
EXAMPLE
a(1) = 10 because "sum of next 2 primes times 2" is (2+3)*2;
a(2) = 69 because "sum of next 3 primes times 3" is (5+7+11)*3;
a(3) = 505 because "sum of next 5 primes times 5" is (13+17+19+23+29)*5;
a(4) = 2177 because "sum of next 7 primes times 7" is (31+37+41+43+47+53+59)*7.
MATHEMATICA
With[{s = Prime@ Range[10^4]}, Rest@Nest[Append[#, {MapAt[Length[#] Total[#] &, TakeDrop[#[[-1, 1, 2]], Prime@ #[[-1, -1]]], 1], #[[-1, -1]] + 1}] &, {{{{}, s}, 1}}, 30]][[All, 1, 1]] (* Michael De Vlieger, Oct 15 2018 *)
PROG
(PHP)
for ($n=1; $i<$maxTestedNumber; $n=$i+1){
if(isPrime($n)){
while ($amountOfPrimes < $n){
if (isPrime($currNum)){
$sumPrimes = $sumPrimes + $currNum;
$amountOfPrimes++;
}
$currentNumber=$currentNumber+1;
}
$sumPrimesTimesN = $n*$sumPrimes;
echo "$sumPrimesTimesN, ";
$sumPrimes=0; //Reset for next cycle
$amountOfPrimes=0; //Reset for next cycle
}
//isPrime can be any function that returns TRUE if the tested number is prime and FALSE if the tested number is not prime.
(PARI) s(n) = sum(k=1, n, prime(k)); \\ A007504
f(n) = s(s(n)) - s(s(n-1)); \\ A034958
a(n) = prime(n)*f(n); \\ Michel Marcus, Oct 12 2018
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved