login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320226
Number of integer partitions of n whose non-1 parts are all equal.
5
1, 1, 2, 3, 5, 6, 9, 10, 13, 15, 18, 19, 24, 25, 28, 31, 35, 36, 41, 42, 47, 50, 53, 54, 61, 63, 66, 69, 74, 75, 82, 83, 88, 91, 94, 97, 105, 106, 109, 112, 119, 120, 127, 128, 133, 138, 141, 142, 151, 153, 158, 161, 166, 167, 174, 177, 184, 187, 190, 191, 202
OFFSET
0,3
LINKS
Jonathan Bloom, Nathan McNew, Counting pattern-avoiding integer partitions, arXiv:1908.03953 [math.CO], 2019.
FORMULA
a(n > 1) = A002541(n - 1) + 1.
EXAMPLE
The integer partitions whose non-1 parts are all equal:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (41) (33) (61) (44)
(111) (31) (221) (51) (331) (71)
(211) (311) (222) (511) (611)
(1111) (2111) (411) (2221) (2222)
(11111) (2211) (4111) (3311)
(3111) (22111) (5111)
(21111) (31111) (22211)
(111111) (211111) (41111)
(1111111) (221111)
(311111)
(2111111)
(11111111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], SameQ@@DeleteCases[#, 1]&]], {n, 30}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 07 2018
STATUS
approved