OFFSET
0,3
COMMENTS
This sequence gives the elements M^n(2, 2) of the matrix M = [[3, 1], [1, -1]].
Motivation to look into these matrix powers came from A319053. M^n[1, 1] = A063782 and M^n(1, 2) = M^n(2, 1) = A085449(n). Proof by Cayley-Hamilton, using S(n, -I) = (-I)^n*F(n+1), and S(n, x) from A049310 and F = A000045.
For a similar signed sequence see A087205.
LINKS
FORMULA
MATHEMATICA
Table[2^(n-1) Fibonacci[n-3], {n, 0, 40}] (* Vincenzo Librandi, Oct 09 2018 *)
LinearRecurrence[{2, 4}, {1, -1}, 40] (* Harvey P. Dale, Mar 29 2020 *)
PROG
(Magma) [2^(n-1)*Fibonacci(n-3): n in [0..30]]; // Vincenzo Librandi, Oct 09 2018
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Oct 09 2018
STATUS
approved