OFFSET
0,2
COMMENTS
a(n) is the total number of isolated "1s" (no adjacent 1s on horizontal and vertical) which appear as unit squares in the Thue-Morse logical matrices after n stages. See links for more details.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Kival Ngaokrajang, Illustration of initial terms
Wikipedia, Thue-Morse sequence
Index entries for linear recurrences with constant coefficients, signature (4, 5, -20, -4, 16).
FORMULA
MATHEMATICA
CoefficientList[Series[2*x*(12*x^4 - 12*x^3 + x^2 + 4*x - 1)/((x - 1)*(x + 1)*(2*x - 1)*(2*x + 1)*(4*x - 1)), {x, 0, 50}], x] (* G. C. Greubel, Sep 29 2017 *)
PROG
(PARI) {a0=0; a1=2; print1(a0, ", ", a1, ", "); for (n=0, 50, b=ceil(2*(2^n-1)/3); a=1- (-1)^b+4*b+2*b^2; print1(a, ", "))}
(PARI) x='x+O('x^50); concat(0, Vec(2*x*(12*x^4-12*x^3+x^2+4*x-1)/((x-1)*(x+1)*(2*x-1)*(2*x+1)*(4*x-1)))) \\ G. C. Greubel, Sep 29 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Kival Ngaokrajang, Apr 27 2014
STATUS
approved