login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319083
Coefficients of polynomials related to the D'Arcais polynomials and Dedekind's eta(q) function, triangle read by rows, T(n,k) for 0 <= k <= n.
9
1, 0, 1, 0, 3, 1, 0, 4, 6, 1, 0, 7, 17, 9, 1, 0, 6, 38, 39, 12, 1, 0, 12, 70, 120, 70, 15, 1, 0, 8, 116, 300, 280, 110, 18, 1, 0, 15, 185, 645, 885, 545, 159, 21, 1, 0, 13, 258, 1261, 2364, 2095, 942, 217, 24, 1, 0, 18, 384, 2262, 5586, 6713, 4281, 1498, 284, 27, 1
OFFSET
0,5
COMMENTS
Column k is the k-fold self-convolution of sigma (A000203). - Alois P. Heinz, Feb 01 2021
For fixed k, Sum_{j=1..n} T(j,k) ~ Pi^(2*k) * n^(2*k) / (6^k * (2*k)!). - Vaclav Kotesovec, Sep 20 2024
LINKS
FORMULA
The polynomials are defined by recurrence: p(0,x) = 1 and for n > 0 by
p(n, x) = x*Sum_{k=0..n-1} sigma(n-k)*p(k, x).
EXAMPLE
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 3, 1;
[3] 0, 4, 6, 1;
[4] 0, 7, 17, 9, 1;
[5] 0, 6, 38, 39, 12, 1;
[6] 0, 12, 70, 120, 70, 15, 1;
[7] 0, 8, 116, 300, 280, 110, 18, 1;
[8] 0, 15, 185, 645, 885, 545, 159, 21, 1;
[9] 0, 13, 258, 1261, 2364, 2095, 942, 217, 24, 1;
MAPLE
P := proc(n, x) option remember; if n = 0 then 1 else
x*add(numtheory:-sigma(n-k)*P(k, x), k=0..n-1) fi end:
Trow := n -> seq(coeff(P(n, x), x, k), k=0..n):
seq(Trow(n), n=0..9);
# second Maple program:
T:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
`if`(k=1, `if`(n=0, 0, numtheory[sigma](n)), (q->
add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Feb 01 2021
# Uses function PMatrix from A357368.
PMatrix(10, NumberTheory:-sigma); # Peter Luschny, Oct 19 2022
MATHEMATICA
T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0],
If[k == 1, If[n == 0, 0, DivisorSigma[1, n]],
With[{q = Quotient[k, 2]}, Sum[T[j, q]*T[n-j, k-q], {j, 0, n}]]]];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 11 2021, after Alois P. Heinz *)
CROSSREFS
Columns k=0..6 give: A000007, A000203, A000385, A374951, A374977, A374978, A374979.
Row sums are A180305.
T(2n,n) gives A340993.
Sequence in context: A274662 A186827 A207327 * A378154 A332099 A045406
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Oct 03 2018
STATUS
approved