login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340993
a(n) is the (2n)-th term of the n-fold self-convolution of the sum of divisors function sigma.
2
1, 3, 17, 120, 885, 6713, 51932, 407214, 3224845, 25733325, 206584437, 1666561042, 13498994796, 109713432390, 894291885000, 7307812510970, 59847327807597, 491062976039618, 4036174402666925, 33224883837921930, 273873806179142545, 2260338391869532332
OFFSET
0,2
LINKS
FORMULA
a(n) = [x^(2n)] (Sum_{j>=1} sigma(j)*x^j)^n.
a(n) = A319083(2n,n).
a(n) ~ c * d^n / sqrt(n), where d = 8.455610430383829836198938524980234226695900064615457328971640722426861925... and c = 0.352126317954512592610958969393229871240824031029408304023118123356... - Vaclav Kotesovec, Jul 25 2024
MAPLE
b:= proc(n, k) option remember; `if`(k=0, 1,
`if`(k=1, numtheory[sigma](n+1), (q->
add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..23);
CROSSREFS
Sequence in context: A368965 A344553 A121572 * A249924 A305307 A074543
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 01 2021
STATUS
approved