login
A318874
Number of divisors d of n for which 2*phi(d) > d.
5
1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 4, 1, 2, 3, 2, 2, 4, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 1, 4, 2, 4, 3, 2, 2, 4, 2, 2, 4, 2, 2, 6, 2, 2, 2, 3, 3, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 6, 1, 4, 4, 2, 2, 4, 4, 2, 3, 2, 2, 6, 2, 4, 4, 2, 2, 5, 2, 2, 4, 4, 2, 4, 2, 2, 6, 4, 2, 4, 2, 4, 2, 2, 3, 6, 3, 2, 4, 2, 2, 7
OFFSET
1,3
LINKS
FORMULA
a(n) = Sum_{d|n} [A083254(d) > 0].
For all n >= 1, a(n) + A318875(n) + A007814(n) = A000005(n).
EXAMPLE
n = 105 has eight divisors: [1, 3, 5, 7, 15, 21, 35, 105]. When A083254 is applied to them, we obtain [1, 1, 3, 5, 1, 3, 13, -9], and seven of these numbers are positive, thus a(105) = 7.
MAPLE
A318874 := n -> nops(select(d -> (2*numtheory:-phi(d)) > d, divisors(n))):
seq(A318874(n), n=1..99); # Peter Luschny, Sep 05 2018
MATHEMATICA
A318874[n_] := DivisorSum[n, 1 &, 2*EulerPhi[#] > # &];
Array[A318874, 100] (* Paolo Xausa, Jul 08 2024 *)
PROG
(PARI) A318874(n) = sumdiv(n, d, (2*eulerphi(d))>d);
CROSSREFS
Differs from A001227 for the first time at n=105, where a(105) = 7, while A001227(105) = 8.
Sequence in context: A225843 A327657 A301957 * A001227 A369466 A060764
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 05 2018
STATUS
approved