login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318807
Numbers whose sum of squarefree divisors and sum of nonsquarefree divisors are both perfect squares.
1
1, 3, 9, 22, 27, 66, 70, 88, 94, 115, 119, 170, 198, 210, 214, 217, 264, 265, 280, 282, 310, 322, 345, 357, 376, 382, 385, 497, 510, 517, 527, 594, 630, 642, 651, 679, 680, 710, 729, 742, 745, 782, 795, 840, 846, 856, 862, 889, 930, 935, 966, 970, 1035, 1066
OFFSET
1,2
COMMENTS
Let s be the sum of the squarefree divisors of a number m. The sequence lists the numbers m such that s and sigma(m) - s are both a perfect square.
Or numbers m such that A048250(m) and A162296(m) are perfect squares.
The corresponding pairs of squares (s, sigma(m) - s) are (1, 0), (4, 0), (4, 9), (36, 0), (4, 36), (144, 0), (144, 0), (36, 144), (144, 0), (144, 0), (144, 0), (324, 0), (144, 324), ...
The subsequence b(n) where s and sigma(m) - s are strictly positive begins with 9, 27, 88, 198, 264, 280, 376, 594, 630, ... b(n) is not squarefree (subsequence of A013929).
The subsequence c(n) where the ratio r = (sigma(a(n)) - s)/s is integer begins with 27, 88, 264, 280, 376, 594, 680, 840, 856, 1128, 1240, ... and the corresponding r are 3^2, 2^2, 2^2, 2^2, 2^2, 3^2, 2^2, 2^2, 2^2, 2^2, 2^2, 2^2, 2^2, 5^2, 3^2, 2^2, 7^2, 3^2, 2^2, 11^2, ... It is conjectured that r belongs to A001248.
LINKS
EXAMPLE
27 is in the sequence because A048250(27) = 4 and A162296(27) = 36 are both a perfect square.
MAPLE
filter:= proc(n) local F, SF, NSF, t;
F:= ifactors(n)[2];
SF:= mul(1+t[1], t=F);
if not issqr(SF) then return false fi;
NSF:= mul((1-t[1]^(1+t[2]))/(1-t[1]), t=F) - SF;
issqr(NSF);
end proc:
select(filter, [$1..2000]); # Robert Israel, Sep 05 2018
MATHEMATICA
lst={}; Do[If[IntegerQ[Sqrt[Total[Select[Divisors[n], SquareFreeQ]]]]&&IntegerQ[Sqrt[DivisorSigma[1, n]-Total[Select[Divisors[n], SquareFreeQ]]]], AppendTo[lst, n]], {n, 1100}]; lst
sdsndQ[n_]:=Module[{d=Divisors[n], sf, nsf}, sf=Select[d, SquareFreeQ]; nsf= Complement[ d, sf]; AllTrue[ {Sqrt[ Total[sf]], Sqrt[ Total[nsf]]}, IntegerQ]]; Select[Range[1500], sdsndQ] (* Harvey P. Dale, Sep 13 2024 *)
PROG
(PARI) isok(n) = {my(sd=sumdiv(n, d, issquarefree(d)*d)); issquare(sd) && issquare(sigma(n) - sd); } \\ Michel Marcus, Sep 04 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Sep 04 2018
EXTENSIONS
Definition modified by Harvey P. Dale, Sep 13 2024
STATUS
approved