OFFSET
0,6
COMMENTS
T(n,m) is divisible by both n! and m!, but not necessarily by n!*m!.
By symmetry T(n,m) = T(m,n).
T(n,2^n-1) = T(n,2^n-2) = (2^n-1)! = A028366(n).
FORMULA
T(n,m) = m! * Sum_{i=0..n} Stirling1(n+1,i+1) * binomial(2^i-1,m) = n! * Sum_{j=0..m} Stirling1(m+1,j+1) * binomial(2^j-1,n).
T(n,m) = A059202(n,m) * m!.
EXAMPLE
Triangle begins:
n=0: 1;
n=1: 0, 1;
n=2: 0, 0, 6, 6;
n=3: 0, 0, 6, 174, 840, 2520, 5040, 5040;
...
PROG
(PARI) { A318537(n, m) = m! * sum(i=0, n, stirling(n+1, i+1)*binomial(2^i - 1, m)); }
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Max Alekseyev, Aug 28 2018
STATUS
approved