login
A317581
a(1) = 1; a(n > 1) = 1 + Sum_{d|n, d<n} mu(n/d) a(d).
2
1, 0, 0, 1, 0, 2, 0, 0, 1, 2, 0, -2, 0, 2, 2, 1, 0, -2, 0, -2, 2, 2, 0, 4, 1, 2, 0, -2, 0, -6, 0, 0, 2, 2, 2, 7, 0, 2, 2, 4, 0, -6, 0, -2, -2, 2, 0, -4, 1, -2, 2, -2, 0, 4, 2, 4, 2, 2, 0, 16, 0, 2, -2, 1, 2, -6, 0, -2, 2, -6, 0, -12, 0, 2, -2, -2, 2, -6, 0, -4
OFFSET
1,6
COMMENTS
If p is prime, a(p^k) = 0 if k is odd, 1 if k is even. - Robert Israel, Aug 01 2018
LINKS
MAPLE
f:= n -> 1 + add(numtheory:-mobius(n/d)*procname(d), d=numtheory:-divisors(n) minus {n}):
f(1):= 1:
map(f, [$1..100]); # Robert Israel, Aug 01 2018
MATHEMATICA
a[n_]:=1+Sum[MoebiusMu[n/d]*a[d], {d, Most[Divisors[n]]}];
Array[a, 100]
PROG
(Python)
from sympy import mobius, divisors
def A317581(n): return 1 + (0 if n == 1 else sum(mobius(n//d)*A317581(d) for d in divisors(n, generator=True) if d < n)) # Chai Wah Wu, Jan 14 2022
CROSSREFS
KEYWORD
sign,eigen
AUTHOR
Gus Wiseman, Jul 31 2018
STATUS
approved