login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309217
The sequence is {a(n), n>=0}, the concatenation of the binary expansions of the absolute values |a(n)| is {b(n), n>=0}; start with a(0)=0; thereafter a(n) = a(n-1)+n if b(n-1)=0, otherwise a(n) = a(n-1)-n.
4
0, 1, -1, -4, -8, -3, 3, -4, 4, 13, 23, 12, 0, -13, -27, -42, -26, -9, -27, -8, 12, -9, -31, -8, -32, -57, -31, -58, -86, -115, -145, -176, -144, -111, -77, -112, -148, -111, -149, -188, -228, -187, -229, -272, -316, -271, -317, -270, -318, -269, -319, -370, -318, -371, -317, -372, -316
OFFSET
0,4
COMMENTS
The b-sequence (A309218) is 0; 1; 1; 1, 0, 0; 1, 0, 0, 0; 1, 1; 1, 1; 1, 0, 0; 1, 0, 0; ... Note that we write the binary expansions in human order (as in A309216), with high-order bits on the left.
This is a base-2 analog of A309216.
LINKS
MAPLE
t:=0;
a:=[0]; b:=[]; M:=100;
for i from 1 to M do
v1:=convert(abs(t), base, 2); L:=nops(v1);
v2:=[seq(v1[L-i+1], i=1..L)];
b:=[op(b), op(v2)];
if (b[i] mod 2) = 0 then t:=t+i else t:=t-i; fi;
a:=[op(a), t];
od:
a; # A309217
b; # A309218
CROSSREFS
KEYWORD
sign,base
AUTHOR
N. J. A. Sloane, Aug 10 2019
STATUS
approved