login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308665
Cardinality of the shortcut set of the multiplicative group of integers modulo the n-th primorial.
1
1, 2, 4, 48, 384, 2304, 4608, 18432, 552960, 19906560, 796262400, 33443020800, 66886041600, 267544166400, 535088332800, 32105299968000, 2118949797888000, 148326485852160000, 10679506981355520000, 833001544545730560000, 1666003089091461120000, 146608271840048578560000
OFFSET
3,2
COMMENTS
{R(1),...,R(phi(prime(n)#))} = {(prime(n)#/2 +- {R(1),...,R(k)}*2^{1,2,...,z}) mod prime(n)#}.
The formula is used for the compressed representation of the set of the multiplicative group of integers modulo prime(n)#. This is a new formula in number theory. {R(1),...,R(k)} is the shortcut set of the multiplicative group of integers modulo prime(n)# (or compressed representation of the set of the multiplicative group of integers modulo prime(n)#).
LINKS
FORMULA
a(n) = A005867(n+2)/(2*A155747(n+1)).
If {R(1),...,R(phi(prime(n)#))} = {(prime(n)#/2 +- {R(1),...,R(k)}*2^{1,2,...,z}) mod prime(n)#} then a(n) = k.
EXAMPLE
First example:
Let R = {1, 7, 11, 13, 17, 19, 23, 29} be the set of the multiplicative group of integers modulo 30 (or it is the set of positive integers less than 2*3*5 and prime to 2*3*5, or it is the reduced residue system for the 3rd primorial number 30 = A002110(3)).
The cardinality of |R| is equal to 8 elements, 8 = A005867(3).
The set {1} is the shortcut set of the multiplicative group of integers modulo 30.
The cardinality of |{1}| = 1, i.e., a(1) = 1.
R = { (30/2 +- {1}*2^{1, ..., 4}) mod 30 } = {(30/2 +- {1}*2^{1,2,3,4}) mod 30}={(15+2^1) mod 30, (15-2^1) mod 30,(15+2^2) mod 30, (15-2^2) mod 30, (15+2^3) mod 30, (15-2^3) mod 30, (15+2^4) mod 30, (15-2^4) mod 30} = {1,7,11,13,17,19,23,29},
where 30 = A002110(3), 4 = A155747(2), |R| = A005867(3).
4 is the smallest number m with the property that 2^m-1 is divisible by the first n odd primes.
Second example:
Let R = {1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209} be the set of the multiplicative group of integers modulo 210 (or it is the set of positive integers less than 2*3*5*7 and prime to 2*3*5*7, or it is the reduced residue system for the 4th primorial number 210 = A002110(4)).
The cardinality of |R| is equal to 48 elements, 48 = A005867(5).
The set {1, 11} is the shortcut set of the multiplicative group of integers modulo 210.
The cardinality of |{1, 11}| = 2, i.e., a(2) = 2.
R = { ( 210/2 +- {1, 11}*2 ^{1..12}) mod 210 }, where 210 = A002110(4), 12 = A155747(3), |R| = A005867(4).
12 is the smallest number m with the property that 2^m-1 is divisible by the first n odd primes.
General case:
R = {R(1), ..., R(phi(prime(n)#))},
R = {(prime(n)#/2 +- {R(1),R(2),...,R(k)}*2^{1,2,...,z}) mod prime(n)#}, where prime(n)# is the product of the first n primes, i.e., it is A002110(n); phi is Euler's totient function, which counts the positive integers up to a given argument that are relatively prime to the argument, in our case phi(prime(n)#) is A005867;
R is the set of the multiplicative group of integers modulo prime(n)#;
z is a term of A155747.
k is a term of a(n).
R(1) <= R(k) < R(phi(prime(n)#)).
Table:
+-----+-----------+----------------+---------+------+
| n | A002110 | A005867 | A155747 | a(n) |
| | prime(n)# | phi(prime(n)#) | z | k |
+-----+-----------+----------------+---------+------+
| 0 | 1 | 1 | - | - |
| 1 | 2 | 1 | - | - |
| 2 | 6 | 2 | 2 | - |
| 3 | 30 | 8 | 4 | 1 |
| 4 | 210 | 48 | 12 | 2 |
| 5 | 2310 | 480 | 60 | 4 |
| 6 | 30030 | 5760 | 60 | 48 |
| 7 | 510510 | 92160 | 120 | 384 |
| 8 | 9699690 | 1658880 | 360 | 2304 |
| .. | ... | ... | ... | ... |
PROG
(PARI) f(n) = prod(k=1, n, prime(k)-1); \\ A005867
g(n) = lcm(vector(n, k, znorder(Mod(2, prime(k+1))))); \\ A155747
a(n) = f(n+2)/(g(n+1)*2); \\ Michel Marcus, Jun 25 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alexey V. Bazhin, Jun 15 2019
STATUS
approved