login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097424
Denominator of Product_{k=1..n} H(k), where H(k) = Sum_{j=1..k} 1/j, the k-th harmonic number.
2
1, 2, 4, 48, 576, 2304, 15360, 614400, 1548288000, 3901685760000, 9832248115200000, 24777265250304000000, 62438708430766080000000, 157345545245530521600000000, 5154640062243579887616000000000
OFFSET
1,2
EXAMPLE
(1)(1 + 1/2)(1 + 1/2 + 1/3) = 1*(3/2)*(11/6) = 11/4, so a(3) = 4.
MATHEMATICA
a[n_] := Denominator[ Product[ HarmonicNumber[k], {k, 1, n}]]; Table[ a[n], {n, 14}] (* Robert G. Wilson v, Aug 26 2004 *)
PROG
(PARI) hh(n)=sum(i=1, n, 1/i); ff(n)=denominator(prod(i=1, n, hh(i))); for (i=1, 30, print1(ff(i), ", ")) \\ Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Aug 23 2004
CROSSREFS
Cf. A097423.
Sequence in context: A144578 A143968 A308665 * A228596 A032019 A181179
KEYWORD
frac,nonn
AUTHOR
Leroy Quet, Aug 21 2004
EXTENSIONS
More terms from Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com) and Robert G. Wilson v, Aug 23 2004
STATUS
approved