login
A308618
Cubefree superabundant numbers: cubefree numbers (A004709) k such that sigma(k)/k > sigma(j)/j for all cubefree numbers j < k.
4
1, 2, 4, 6, 12, 30, 36, 60, 180, 420, 1260, 4620, 6300, 13860, 69300, 180180, 900900, 3063060, 15315300, 58198140, 290990700, 1338557220, 2036934900, 6692786100, 38818159380, 46849502700, 194090796900, 1358635578300, 6016814703900, 42117702927300, 222622144044300
OFFSET
1,2
COMMENTS
Erdős and Nicolas named these numbers "nombres sans cube superabondants".
All the terms are either primorials (A002110) or products of two primorials.
Also numbers m such that A073185(m)/m > A073185(k)/k for all k < m. - Amiram Eldar, Oct 08 2022
LINKS
Paul Erdős and Jean-Louis Nicolas, Répartition des nombres superabondants", Bulletin de la Société Mathématique de France, Vol. 103 (1975), pp. 65-90. See section 5, p. 83.
MATHEMATICA
cubeFreeQ[n_] := Max @ FactorInteger[n][[;; , 2]] < 3; s = {}; rm = 0; Do[If[ !cubeFreeQ[n], Continue[]]; r = DivisorSigma[1, n]/n; If[r > rm, rm = r; AppendTo[s, n]], {n, 1, 10^6}]; s
CROSSREFS
Subsequence of A025487 and A220423.
Sequence in context: A333931 A353899 A377139 * A283021 A309039 A087902
KEYWORD
nonn
AUTHOR
Amiram Eldar, Aug 21 2019
STATUS
approved