login
A308616
Number of well-formed formulas of length n in a formal propositional language with one unitary operator, one binary operator, and one propositional variable.
6
1, 0, 0, 1, 1, 0, 1, 3, 2, 1, 6, 10, 6, 10, 30, 36, 29, 70, 141, 147, 182, 421, 658, 714, 1183, 2346, 3192, 4027, 7404, 12672, 16633, 24508, 44462, 68641, 93588, 151866, 260118, 381888, 557128, 934220, 1509807, 2205216, 3414269, 5681573, 8828612, 13179557, 21120648, 34335784, 52494403, 80688120
OFFSET
1,8
COMMENTS
In a formal propositional language, a single propositional variable (usually represented by a lowercase letter) is a well-formed formula of length 1, if A is a WFF of length L then (-A) is a WFF of length L + 3, and if A and B are WFFs of length L1 and L2 then (A*B) is a WFF of length L1 + L2 + 3.
Equivalently, the number of weighted unary-binary plane trees of weight n with non-leaf nodes having a weight of 3 and leaf nodes having a weight of 1. - Andrew Howroyd, Sep 15 2019
FORMULA
If S is the set of pairs of nonnegative integers for which 4b + 3u + 1 = n, then a(n) = Sum_{(b,u) in S} binomial(2b+u, u)*A000108(b).
From Andrew Howroyd, Sep 15 2019: (Start)
G.f.: A(x) satisfies A(x) = x + x^3*(A(x)^2 + A(x)).
G.f.: (1 - x^3 - sqrt((1 - x^3)^2 - 4*x*x^3))/(2*x^3). (End)
a(n) ~ 5^(1/4) * phi^(n+2) / (2*sqrt(Pi)*n^(3/2)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 28 2019
EXAMPLE
For n = 8, there are a(8) = 3 possible well-formed formulas: (-(a*a)),((-a)*a),(a*(-a)).
For n = 12, there are a(12) = 10 possible well-formed formulas: (-((a*a)*a)), ((-(a*a))*a), (((-a)*a)*a), ((a*(-a))*a), ((a*a)*(-a)), (-(a*(a*a))), ((-a)*(a*a)), (a*(-(a*a))), (a*((-a)*a)), (a*(a*(-a))).
MATHEMATICA
nmax = 50; A[_] = 0;
Do[A[x_] = x + x^3 (A[x]^2 + A[x]) + O[x]^(nmax+1), {nmax+1}];
CoefficientList[A[x]/x, x] (* Jean-François Alcover, Sep 28 2019 *)
PROG
(PARI) seq(n)={Vec(1 - x^3 - sqrt((1 - x^3)^2 - 4*x*x^3 + O(x^4*x^n)))/2} \\ Andrew Howroyd, Sep 15 2019
CROSSREFS
Cf. A000108.
Sequence in context: A144250 A156367 A193593 * A181853 A008276 A094638
KEYWORD
nonn,easy
AUTHOR
Zachary T. King, Sep 13 2019
STATUS
approved