login
A307503
Least prime containing at least n consecutive 1's in its binary representation.
1
2, 2, 3, 7, 31, 31, 127, 127, 1021, 3583, 4093, 6143, 8191, 8191, 81919, 131071, 131071, 131071, 524287, 524287, 4194301, 14680063, 16777213, 67108859, 536870909, 536870909, 536870909, 536870909, 2147483647, 2147483647, 2147483647, 2147483647, 21474836479
OFFSET
0,1
COMMENTS
For n > 0, a(n) = A000040(m) for the lowest m such that A090000(m) >= n.
a(n) = A087522(n) for n = 0 through 7, and in all other cases when a(n) is a base 2 repunit (Mersenne) prime.
FORMULA
a(n) <= A201914(n). - Rémy Sigrist, Apr 11 2019
a(n) = min_{k>=n} A090593(k). - Chai Wah Wu, Apr 26 2019
EXAMPLE
a(0) = 2, the smallest prime containing >= 0 1's.
a(1) = 2, the smallest prime containing >= 1 consecutive 1's.
a(2) = 3, the smallest prime containing >= 2 consecutive 1's.
PROG
(PARI) nbo(n)=if (n==0, return (0)); n>>=valuation(n, 2); if(n<2, return(n)); my(e=valuation(n+1, 2)); max(e, nbo(n>>e)); \\ A038374
a(n) = my(p=2); while(nbo(p) < n, p=nextprime(p+1)); p; \\ Michel Marcus, Apr 14 2019
CROSSREFS
Cf. A090593 (with exactly n consecutive ones).
Sequence in context: A038507 A077001 A180996 * A087522 A092970 A052449
KEYWORD
nonn,base
AUTHOR
John Mason, Apr 11 2019
EXTENSIONS
a(28)-a(32) from Chai Wah Wu, Apr 26 2019
STATUS
approved