login
A052449
a(n) = 1 + Product_{k=1..n} Fibonacci(k).
4
2, 2, 3, 7, 31, 241, 3121, 65521, 2227681, 122522401, 10904493601, 1570247078401, 365867569267201, 137932073613734401, 84138564904377984001, 83044763560621070208001, 132622487406311849122176001, 342696507457909818131702784001
OFFSET
1,1
COMMENTS
The first 8 terms are primes. - Jonathan Vos Post, Dec 08 2012
a(22) and a(28) are also primes. - Robert Israel, Jun 10 2015
There are no further primes up to a(300). - Harvey P. Dale, Feb 28 2023
LINKS
Eric Weisstein's World of Mathematics, Fibonacci Number.
FORMULA
a(n) = A003266(n)+1. - Robert Israel, Jun 10 2015
MAPLE
seq(1+mul(combinat:-fibonacci(j), j=1..n), n=1..30); # Robert Israel, Jun 10 2015
MATHEMATICA
1 + Table[Times @@ Fibonacci[Range[n]], {n, 20}] (* T. D. Noe, Dec 29 2012 *)
FoldList[Times, Fibonacci[Range[20]]]+1 (* Harvey P. Dale, Feb 28 2023 *)
PROG
(PARI) vector(20, n, 1+prod(j=1, n, fibonacci(j))) \\ G. C. Greubel, Sep 26 2019
(Magma) [1+(&*[Fibonacci(j): j in [1..n]]): n in [1..20]]; // G. C. Greubel, Sep 26 2019
(Sage) [1+product(fibonacci(j) for j in (1..n)) for n in (1..20)] # G. C. Greubel, Sep 26 2019
(GAP) List([1..20], n-> 1+Product([1..n], j-> Fibonacci(j)) ); # G. C. Greubel, Sep 26 2019
CROSSREFS
KEYWORD
nonn
STATUS
approved