login
A306186
Array read by antidiagonals upwards where A(n, k) is the number of non-isomorphic multiset partitions of weight n with k levels of brackets.
21
1, 2, 1, 3, 4, 1, 5, 10, 6, 1, 7, 33, 21, 8, 1, 11, 91, 104, 36, 10, 1, 15, 298, 452, 238, 55, 12, 1, 22, 910, 2335, 1430, 455, 78, 14, 1, 30, 3017, 11992, 10179, 3505, 775, 105, 16, 1, 42, 9945, 66810, 74299, 31881, 7297, 1218, 136, 18, 1, 56
OFFSET
1,2
EXAMPLE
Array begins:
k=1: k=2: k=3: k=4: k=5: k=6:
n=1: 1 1 1 1 1 1
n=2: 2 4 6 8 10 12
n=3: 3 10 21 36 55 78
n=4: 5 33 104 238 455 775
n=5: 7 91 452 1430 3505 7297
n=6: 11 298 2335 10179 31881 80897
Non-isomorphic representatives of the A(3,3) = 21 multiset partitions:
{{111}} {{112}} {{123}}
{{1}{11}} {{1}{12}} {{1}{23}}
{{1}}{{11}} {{2}{11}} {{1}}{{23}}
{{1}{1}{1}} {{1}}{{12}} {{1}{2}{3}}
{{1}}{{1}{1}} {{1}{1}{2}} {{1}}{{2}{3}}
{{1}}{{1}}{{1}} {{2}}{{11}} {{1}}{{2}}{{3}}
{{1}}{{1}{2}}
{{2}}{{1}{1}}
{{1}}{{1}}{{2}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
undats[m_]:=Union[DeleteCases[Cases[m, _?AtomQ, {0, Infinity}, Heads->True], List]];
expnorm[m_]:=If[Length[undats[m]]==0, m, If[undats[m]!=Range[Max@@undats[m]], expnorm[m/.Apply[Rule, Table[{undats[m][[i]], i}, {i, Length[undats[m]]}], {1}]], First[Sort[expnorm[m, 1]]]]];
expnorm[m_, aft_]:=If[Length[undats[m]]<=aft, {m}, With[{mx=Table[Count[m, i, {0, Infinity}, Heads->True], {i, Select[undats[m], #1>=aft&]}]}, Union@@(expnorm[#1, aft+1]&)/@Union[Table[MapAt[Sort, m/.{par+aft-1->aft, aft->par+aft-1}, Position[m, _[___]]], {par, First/@Position[mx, Max[mx]]}]]]];
strnorm[n_]:=(Flatten[MapIndexed[Table[#2, {#1}]&, #1]]&)/@IntegerPartitions[n];
kmp[n_, k_]:=kmp[n, k]=If[k==1, strnorm[n], Union[expnorm/@Join@@mps/@kmp[n, k-1]]];
Table[Length[kmp[sum-k, k]], {sum, 1, 7}, {k, 1, sum-1}]
CROSSREFS
Columns: A000041 (k=1), A007716 (k=2), A318566 (k=3).
Rows: A000012 (n=1), A005843 (n=2), A014105 (n=3).
Sequence in context: A055888 A094442 A060642 * A154929 A249042 A262472
KEYWORD
nonn,tabl,more
AUTHOR
Gus Wiseman, Jan 27 2019
EXTENSIONS
a(46)-a(56) from Robert Price, May 11 2021
STATUS
approved