login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306037
Expansion of e.g.f. 1/(1 + log(1 - log(1 + x))).
1
1, 1, 2, 7, 31, 178, 1200, 9588, 86592, 887086, 10035164, 125472246, 1705102394, 25175822644, 399387494956, 6801042408728, 123348694663480, 2379855020533664, 48569042602254128, 1047134236970183664, 23748242269316806752, 565834452464428045872, 14117321495269290091440
OFFSET
0,3
LINKS
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Stirling Transform
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n,k)*A007840(k).
a(n) ~ n! * exp(-exp(-1)) / (exp(1 - exp(-1)) - 1)^(n+1). - Vaclav Kotesovec, Jul 01 2018
EXAMPLE
1/(1 + log(1 - log(1 + x))) = 1 + x + 2*x^2/2! + 7*x^3/3! + 31*x^4/4! + 178*x^5/5! + 1200*x^6/6! + ...
MAPLE
a:=series(1/(1+log(1-log(1+x))), x=0, 23): seq(n!*coeff(a, x, n), n=0..22); # Paolo P. Lava, Mar 26 2019
MATHEMATICA
nmax = 22; CoefficientList[Series[1/(1 + Log[1 - Log[1 + x]]), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Sum[StirlingS1[n, k] Abs[StirlingS1[k, j]] j!, {j, 0, k}], {k, 0, n}], {n, 0, 22}]
a[0] = 1; a[n_] := a[n] = Sum[Sum[(j - 1)! StirlingS1[k, j], {j, 1, k}] a[n - k]/k!, {k, 1, n}]; Table[n! a[n], {n, 0, 22}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 17 2018
STATUS
approved