login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305323
Expansion of e.g.f. 1/(1 + log(1 + log(1 - x))).
4
1, 1, 4, 25, 211, 2238, 28560, 425808, 7261200, 139367278, 2973006344, 69775267186, 1786673529746, 49565881948204, 1480900541242572, 47407364553205448, 1618838460981098680, 58734896900587841824, 2256402484187691207152, 91499934912942249975504, 3905739517580787866827872
OFFSET
0,3
LINKS
FORMULA
a(n) ~ n! / (exp(2 - exp(-1)) * (1 - exp(exp(-1) - 1))^(n+1)). - Vaclav Kotesovec, May 31 2018
a(n) = Sum_{k=0..n} |Stirling1(n,k)| * A007840(k). - Seiichi Manyama, May 11 2023
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 25*x^3/3! + 211*x^4/4! + 2238*x^5/5! + 28560*x^6/6! + ...
MAPLE
S:= series(1/(1+log(1+log(1-x))), x, 31):
seq(coeff(S, x, n)*n!, n=0..30); # Robert Israel, May 31 2018
MATHEMATICA
nmax = 20; CoefficientList[Series[1/(1 + Log[1 + Log[1 - x]]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Sum[(j - 1)! Abs[StirlingS1[k, j]], {j, 1, k}] a[n - k]/k!, {k, 1, n}]; Table[n! a[n], {n, 0, 20}]
PROG
(PARI) x = 'x + O('x^30); Vec(serlaplace(1/(1 + log(1 + log(1 - x))))) \\ Michel Marcus, May 31 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 30 2018
STATUS
approved