OFFSET
0,3
LINKS
S. Falcon, Generalized Fibonacci Sequences Generated from a k-Fibonacci Sequence, Journal of Mathematics Research, Vol. 4, No. 2 (2012), 97-100.
Shaoxiong Yuan, Generalized Identities of Certain Continued Fractions, arXiv:1907.12459 [math.NT], 2019.
Index entries for linear recurrences with constant coefficients, signature (199,1).
FORMULA
G.f.: x/(1 - 199*x - x^2).
a(n) = 199*a(n-1) + a(n-2) for n>1, a(0)=0, a(1)=1.
a(n) = A167398(n)/89.
For n >= 1, a(n) equals the denominator of the continued fraction [199, 199, ..., 199] (with n copies of 199). The numerator of that continued fraction is a(n+1). - Greg Dresden and Shaoxiong Yuan, Jul 29 2019
MATHEMATICA
Fibonacci[11 Range[0, 20]]/89
LinearRecurrence[{199, 1}, {0, 1}, 20] (* Harvey P. Dale, Aug 03 2024 *)
PROG
(Magma) [Fibonacci(11*n)/89: n in [0..30]];
(PARI) a(n) = fibonacci(11*n)/89 \\ Felix Fröhlich, Jul 30 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jun 05 2018
STATUS
approved