OFFSET
0,3
COMMENTS
Chebyshev polynomials S(n-1,123).
Used for all positive integer solutions of Pell equation x^2 - 5*(5*y)^2 = -4. See A097842 with A097843.
This is the k = 10 member of the k-family of sequences {F(k*n)/F(k)}, n >= 0 for k >= 1, with o.g.f. x/(1 - L(k)*x + (-1)^k*x^2). Proof: Binet-de Moivre formula for F and L. See also A028412. - Wolfdieter Lang, Aug 26 2012
LINKS
Robert Israel, Table of n, a(n) for n = 0..383
Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (123,-1).
FORMULA
G.f.: x/(1-123*x+x^2), 123=L(10)=A000032(10) (Lucas).
a(n+1) = S(n, 123) = U(n, 123/2) = S(2*n+1, 5*sqrt(5))/(5*sqrt(5)), n>=0, with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n) = 123*a(n-1) - a(n-2), n >= 2; a(0)=0, a(1)=1.
a(n) = (ap^n - am^n)/(ap-am) with ap := (123+55*sqrt(5))/2 and am := (123-55*sqrt(5))/2 = 1/ap.
From Peter Bala, Nov 29 2013: (Start)
a(n) = 1/(11*55)*(F(10*n + 5) - F(10*n - 5)).
From Peter Bala, Apr 03 2015: (Start)
For integer k, 1 + k*(22 - k)*Sum_{n >= 1} a(n)*x^(2*n) = ( 1 + k/5*Sum_{n >= 1} Fibonacci(5*n)*x^n )*( 1 + k/5*Sum_{n >= 1} Fibonacci(5*n)*(-x)^n ).
1 + 4*Sum_{n >= 1} a(n)*x^(2*n) = ( 1 + 2/5*Sum_{n >= 1} Fibonacci(5*n+5)*x^n )*( 1 + 2/5*Sum_{n >= 1} Fibonacci(5*n+5)*(-x)^n ) = ( 1 + 2/5*Sum_{n >= 1} Fibonacci(5*n-5)*x^n )*( 1 + 2/5*Sum_{n >= 1} Fibonacci(5*n-5)*(-x)^n ).
1 + 25*Sum_{n >= 1} a(n)*x^(2*n) = ( 1 + Sum_{n >= 1} Fibonacci(5*n+3)*x^n )*( 1 + Sum_{n >= 1} Fibonacci(5*n+3)*(-x)^n ) = ( 1 + Sum_{n >= 1} Fibonacci(5*n-3)*x^n )*( 1 + Sum_{n >= 1} Fibonacci(5*n-3)*(-x)^n ).
1 + 100*Sum_{n >= 1} a(n)*x^(2*n) = ( 1 + 2*Sum_{n >= 1} Fibonacci(5*n+1)*x^n )*( 1 + 2*Sum_{n >= 1} Fibonacci(5*n+1)*(-x)^n ) = ( 1 + 2*Sum_{n >= 1} Fibonacci(5*n-1)*x^n )*( 1 + 2*Sum_{n >= 1} Fibonacci(5*n-1)*(-x)^n ).
1 + 125*Sum_{n >= 1} a(n)*x^(2*n) = ( 1 + Sum_{n >= 1} Lucas(5*n)*x^n )*( 1 + Sum_{n >= 1} Lucas(5*n)*(-x)^n ). (End)
MAPLE
seq(combinat:-fibonacci(10*n)/55, n=0..20); # Robert Israel, Apr 03 2015
MATHEMATICA
Table[Fibonacci[10 n]/55, {n, 12}] (* Michael De Vlieger, Apr 03 2015 *)
LinearRecurrence[{123, -1}, {0, 1}, 20] (* Harvey P. Dale, Dec 03 2019 *)
PROG
(MuPAD) numlib::fibonacci(10*n)/55 $ n = 0..25; // Zerinvary Lajos, May 09 2008
(PARI) a(n)=fibonacci(10*n)/55 \\ Charles R Greathouse IV, Oct 07 2016
(Magma) [ Fibonacci(10*n)/55: n in [0..30]]; // G. C. Greubel, Dec 02 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Jan 20 2000
Chebyshev and Pell comments from Wolfdieter Lang, Sep 10 2004
STATUS
approved