login
A305023
Number of triples (p,q,r) of partitions such that p is a partition of n and r <= q <= p (by diagram containment).
2
1, 3, 12, 34, 100, 246, 630, 1433, 3298, 7124, 15283, 31358, 64100, 126406, 247587, 472864, 895548, 1661690, 3059734, 5538991, 9950980, 17631398, 31004004, 53878023, 92979904, 158806852, 269448833, 453099946, 757152246, 1255180557, 2068707378, 3385065586
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Ferrers Diagram
Wikipedia, Ferrers diagram
EXAMPLE
a(0) = 1: ((),(),()).
a(1) = 3: (1,(),()), (1,1,()), (1,1,1).
a(2) = 12: (11,(),()), (11,1,()), (11,1,1), (11,11,()), (11,11,1), (11,11,11), (2,(),()), (2,1,()), (2,1,1), (2,2,()), (2,2,1), (2,2,2).
a(3) = 34: (111,(),()), (111,1,()), (111,1,1), (111,11,()), (111,11,1), (111,11,11), (111,111,()), (111,111,1), (111,111,11), (111,111,111), (21,(),()), (21,1,()), (21,1,1), (21,11,()), (21,11,1), (21,11,11), (21,2,()), (21,2,1), (21,2,2), (21,21,()), (21,21,1), (21,21,11), (21,21,2), (21,21,21), (3,(),()), (3,1,()), (3,1,1), (3,2,()), (3,2,1), (3,2,2), (3,3,()), (3,3,1), (3,3,2), (3,3,3).
CROSSREFS
Sequence in context: A304975 A226546 A073372 * A026573 A326660 A225075
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 23 2018
STATUS
approved