login
A297388
Number of pairs (p,q) of partitions such that q is a partition of n and p <= q (diagram containment).
24
1, 2, 6, 13, 30, 58, 120, 219, 413, 730, 1296, 2201, 3766, 6206, 10241, 16500, 26502, 41748, 65600, 101417, 156264, 237741, 360146, 539838, 806030, 1192365, 1756766, 2568418, 3739724, 5408247, 7791474, 11156601, 15916288, 22585112, 31933166, 44932450, 63010688
OFFSET
0,2
COMMENTS
For fixed q, the number of p is given by a determinant due to MacMahon (the case mu=empty set and n=1 of Exercise 3.149 of the reference below).
REFERENCES
R. Stanley, Enumerative Combinatorics, vol. 1, second ed., Cambridge Univ. Press, 2012.
LINKS
FORMULA
a(n) = A000041(n) + Sum_{k=1..n} A259478(n,k). - Alois P. Heinz, Jan 10 2018
EXAMPLE
For n = 2 the six pairs are (empty set,2), (1,2), (2,2), (empty set,11), (1,11), (11,11).
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0 or i=1, 1+
`if`(t=0, 0, n), b(n, i-1, min(i-1, t))+ add(
b(n-i, min(i, n-i), min(j, n-i)), j=0..t))
end:
a:= n-> b(n$3):
seq(a(n), n=0..40); # Alois P. Heinz, Dec 29 2017
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n == 0 || i == 1, 1 + If[t == 0, 0, n], b[n, i - 1, Min[i - 1, t]] + Sum[b[n - i, Min[i, n - i], Min[j, n - i]], {j, 0, t}]];
a[n_] := b[n, n, n];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Richard Stanley, Dec 29 2017
STATUS
approved