login
A152176
Triangle read by rows: T(n,k) is the number of k-block partitions of an n-set up to rotations and reflections.
22
1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 5, 2, 1, 1, 7, 14, 11, 3, 1, 1, 8, 31, 33, 16, 3, 1, 1, 17, 82, 137, 85, 27, 4, 1, 1, 22, 202, 478, 434, 171, 37, 4, 1, 1, 43, 538, 1851, 2271, 1249, 338, 54, 5, 1, 1, 62, 1401, 6845, 11530, 8389, 3056, 590, 70, 5, 1, 1, 121, 3838, 26148
OFFSET
1,8
COMMENTS
Number of bracelet structures of length n using exactly k different colored beads. Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure. - Andrew Howroyd, Apr 06 2017
The number of achiral structures (A) is given in A140735 (odd n) and A293181 (even n). The number of achiral structures plus twice the number of chiral pairs (A+2C) is given in A152175. These can be used to determine A+C by taking half their average, as is done in the Mathematica program. - Robert A. Russell, Feb 24 2018
T(n,k)=pi_k(C_n) which is the number of non-equivalent partitions of the cycle on n vertices, with exactly k parts. Two partitions P1 and P2 of a graph G are said to be equivalent if there is a nontrivial automorphism of G which maps P1 onto P2. - Mohammad Hadi Shekarriz, Aug 21 2019
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
EXAMPLE
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 3, 2, 1;
1, 3, 5, 2, 1;
1, 7, 14, 11, 3, 1;
1, 8, 31, 33, 16, 3, 1;
1, 17, 82, 137, 85, 27, 4, 1;
1, 22, 202, 478, 434, 171, 37, 4, 1;
1, 43, 538, 1851, 2271, 1249, 338, 54, 5, 1;
...
MATHEMATICA
Adn[d_, n_] := Adn[d, n] = Which[0==n, 1, 1==n, DivisorSum[d, x^# &],
1==d, Sum[StirlingS2[n, k] x^k, {k, 0, n}],
True, Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n - 1], x] x]];
Ach[n_, k_] := Ach[n, k] = Switch[k, 0, If[0==n, 1, 0], 1, If[n>0, 1, 0],
(* else *) _, If[OddQ[n], Sum[Binomial[(n-1)/2, i] Ach[n-1-2i, k-1],
{i, 0, (n-1)/2}], Sum[Binomial[n/2-1, i] (Ach[n-2-2i, k-1]
+ 2^i Ach[n-2-2i, k-2]), {i, 0, n/2-1}]]] (* achiral loops of length n, k colors *)
Table[(CoefficientList[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/(x n), x]
+ Table[Ach[n, k], {k, 1, n}])/2, {n, 1, 20}] // Flatten (* Robert A. Russell, Feb 24 2018 *)
PROG
(PARI) \\ see A056391 for Polya enumeration functions
T(n, k) = NonequivalentStructsExactly(DihedralPerms(n), k); \\ Andrew Howroyd, Oct 14 2017
(PARI) \\ Ach is A304972 and R is A152175 as square matrices.
Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
T(n)={(R(n) + Ach(n))/2}
{ my(A=T(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019
CROSSREFS
Columns 2-6 are A056357, A056358, A056359, A056360, A056361.
Row sums are A084708.
Partial row sums include A000011, A056353, A056354, A056355, A056356.
Cf. A081720, A273891, A008277 (set partitions), A284949 (up to reflection), A152175 (up to rotation).
Sequence in context: A262311 A242950 A304972 * A152175 A321620 A353157
KEYWORD
nonn,tabl
AUTHOR
Vladeta Jovovic, Nov 27 2008
STATUS
approved