login
A304776
A weakening function. a(n) = n / A007947(n)^(A051904(n) - 1) where A007947 is squarefree kernel and A051904 is minimum prime exponent.
3
1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 12, 13, 14, 15, 2, 17, 18, 19, 20, 21, 22, 23, 24, 5, 26, 3, 28, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 7, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 2, 65, 66, 67, 68, 69, 70, 71, 12, 73, 74, 75, 76, 77, 78, 79, 80, 3, 82, 83
OFFSET
1,2
COMMENTS
This function takes powerful numbers (A001694) to weak numbers (A052485) and leaves weak numbers unchanged.
First differs from A052410 at a(72) = 12, A052410(72) = 72.
LINKS
FORMULA
a(n) = n / A354090(n). - Antti Karttunen, May 19 2022
Sum_{k=1..n} a(k) ~ n^2 / 2. - Amiram Eldar, Sep 12 2024
MATHEMATICA
spr[n_]:=Module[{f, m}, f=FactorInteger[n]; m=Min[Last/@f]; n/Times@@First/@f^(m-1)];
Array[spr, 100]
PROG
(PARI)
A007947(n) = factorback(factorint(n)[, 1]);
A051904(n) = if((1==n), 0, vecmin(factor(n)[, 2]));
A304776(n) = (n/(A007947(n)^(A051904(n)-1))); \\ Antti Karttunen, May 19 2022
(PARI) a(n) = if(n == 1, 1, my(f = factor(n), p = f[, 1], e = f[, 2]); n / vecprod(p)^(vecmin(e) - 1)); \\ Amiram Eldar, Sep 12 2024
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 18 2018
EXTENSIONS
Data section extended up to a(83) by Antti Karttunen, May 19 2022
STATUS
approved