Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 May 23 2018 10:59:39
%S 754,1330,2482,4786,9394,18610,37042,73906,147634,295090,590002,
%T 1179826,2359474,4718770,9437362,18874546,37748914,75497650,150995122,
%U 301990066,603979954,1207959730,2415919282,4831838386,9663676594,19327353010,38654705842,77309411506,154618822834,309237645490,618475290802
%N a(n) = 288*2^n + 178 (n >= 1).
%C a(n) is the second Zagreb index of the nanostar dendrimer G[n] from the Ashrafi et al. reference.
%C The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
%C The M-polynomial of G[n] is M(G[n]; x,y) = 4*x*y^4 + (18*2^n + 21)*x^2*y^2 + (36*2^n - 9)*x^2*y^3 + 3*x^2*y^4 + 9*x^3*y^4.
%H Colin Barker, <a href="/A304608/b304608.txt">Table of n, a(n) for n = 1..1000</a>
%H A. R. Ashrafi, A. Karbasioun, and M. V. Diudea, <a href="http://match.pmf.kg.ac.rs/electronic_versions/Match65/n1/match65n1_193-200.pdf">Computing Wiener and detour indices of a new type of nanostar dendrimers</a>, MATCH Commun. Math. Comput. Chem. 65, 2011, 193-200.
%H E. Deutsch and Sandi Klavzar, <a href="http://dx.doi.org/10.22052/ijmc.2015.10106">M-polynomial and degree-based topological indices</a>, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2).
%F From _Michael De Vlieger_, May 16 2018: (Start)
%F G.f.: 2*x*(377 - 466*x)/(1 - 3*x + 2*x^2).
%F a(n) = 3*a(n - 1) - 2*a(n - 2) for n > 2. (End)
%p seq(288*2^n+178, n = 1 .. 40);
%t CoefficientList[Series[2 (377 - 466 x)/(1 - 3 x + 2 x^2), {x, 0, 30}], x] (* or *)
%t LinearRecurrence[{3, -2}, {754, 1330}, 31] (* or *)
%t Array[288*2^# + 178 &, 31] (* _Michael De Vlieger_, May 16 2018 *)
%o (PARI) a(n) = 288*2^n + 178; \\ _Altug Alkan_, May 15 2018
%o (PARI) Vec(2*x*(377 - 466*x)/(1 - 3*x + 2*x^2) + O(x^40)) \\ _Colin Barker_, May 23 2018
%o (GAP) List([1..40],n->288*2^n+178); # _Muniru A Asiru_, May 16 2018
%Y Cf. A304605, A304606, A304607.
%K nonn,easy
%O 1,1
%A _Emeric Deutsch_, May 15 2018