login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304608
a(n) = 288*2^n + 178 (n >= 1).
4
754, 1330, 2482, 4786, 9394, 18610, 37042, 73906, 147634, 295090, 590002, 1179826, 2359474, 4718770, 9437362, 18874546, 37748914, 75497650, 150995122, 301990066, 603979954, 1207959730, 2415919282, 4831838386, 9663676594, 19327353010, 38654705842, 77309411506, 154618822834, 309237645490, 618475290802
OFFSET
1,1
COMMENTS
a(n) is the second Zagreb index of the nanostar dendrimer G[n] from the Ashrafi et al. reference.
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of G[n] is M(G[n]; x,y) = 4*x*y^4 + (18*2^n + 21)*x^2*y^2 + (36*2^n - 9)*x^2*y^3 + 3*x^2*y^4 + 9*x^3*y^4.
LINKS
A. R. Ashrafi, A. Karbasioun, and M. V. Diudea, Computing Wiener and detour indices of a new type of nanostar dendrimers, MATCH Commun. Math. Comput. Chem. 65, 2011, 193-200.
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
FORMULA
From Michael De Vlieger, May 16 2018: (Start)
G.f.: 2*x*(377 - 466*x)/(1 - 3*x + 2*x^2).
a(n) = 3*a(n - 1) - 2*a(n - 2) for n > 2. (End)
MAPLE
seq(288*2^n+178, n = 1 .. 40);
MATHEMATICA
CoefficientList[Series[2 (377 - 466 x)/(1 - 3 x + 2 x^2), {x, 0, 30}], x] (* or *)
LinearRecurrence[{3, -2}, {754, 1330}, 31] (* or *)
Array[288*2^# + 178 &, 31] (* Michael De Vlieger, May 16 2018 *)
PROG
(PARI) a(n) = 288*2^n + 178; \\ Altug Alkan, May 15 2018
(PARI) Vec(2*x*(377 - 466*x)/(1 - 3*x + 2*x^2) + O(x^40)) \\ Colin Barker, May 23 2018
(GAP) List([1..40], n->288*2^n+178); # Muniru A Asiru, May 16 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 15 2018
STATUS
approved