login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. 1 / Sum_{n >= 0} (n+1)^3*x^n/n!.
4

%I #30 Mar 08 2024 12:00:27

%S 1,-8,101,-1840,44441,-1340696,48530653,-2049479216,98915010545,

%T -5370730092136,324012625790741,-21502216185516848,

%U 1556657523678767881,-122085765970981019000,10311495889448094131981,-933128678308256836233136,90072066063382006331898593

%N Expansion of e.g.f. 1 / Sum_{n >= 0} (n+1)^3*x^n/n!.

%C From _Vaclav Kotesovec_, Apr 15 2018: (Start)

%C In general, for m>=0, Sum_{k>=0} (k+1)^m * x^k / k! = exp(x) * Sum_{j = 1..m+1} Stirling2(m+1, j) * x^(j-1).

%C If m tends to infinity, then the real root of the equation Sum_{j = 1..m+1} Stirling2(m + 1, j) * x^(j-1) = 0, with a minimal absolute value, tends to -1/2^m.

%C (End)

%H Seiichi Manyama, <a href="/A302870/b302870.txt">Table of n, a(n) for n = 0..345</a>

%F From _Vaclav Kotesovec_, Apr 15 2018: (Start)

%F E.g.f: exp(-x)/(1 + 7*x + 6*x^2 + x^3).

%F a(n) ~ (-1)^n * n! * (371 + 414*r + 74*r^2) * exp(-r) * (7 + 6*r + r^2)^n / 257, where r = -0.16575681568607828288437387419... is the real root of the equation 1 + 7*r + 6*r^2 + r^3 = 0.

%F (End)

%t nmax = 20; CoefficientList[Series[1/(E^x*((1 + 7*x + 6*x^2 + x^3))), {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Apr 15 2018 *)

%Y Cf. A302189.

%K sign

%O 0,2

%A _Seiichi Manyama_, Apr 15 2018