login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302189
Hurwitz inverse of squares [1,4,9,16,...].
12
1, -4, 23, -184, 1933, -25316, 397699, -7288408, 152650649, -3596802148, 94165506031, -2711813462744, 85195437862693, -2899579176456964, 106276755720182363, -4173542380352243896, 174823612884063939889, -7780800729631450594628
OFFSET
0,2
COMMENTS
In the ring of Hurwitz sequences all members have offset 0.
REFERENCES
Xing Gao and William F. Keigher, Interlacing of Hurwitz series, Communications in Algebra, 45:5 (2017), 2163-2185, DOI: 10.1080/00927872.2016.1226885
FORMULA
E.g.f. = 1 / Sum_{n >= 0} (n+1)^2*x^n/n!.
From Vaclav Kotesovec, Apr 15 2018: (Start)
E.g.f: exp(-x)/(1 + 3*x + x^2).
a(n) ~ (-1)^n * n! * exp(1/phi^2) * phi^(2*n + 2) / sqrt(5), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio.
(End)
MAPLE
# first load Maple commands for Hurwitz operations from link
s:=[seq(n^2, n=1..64)];
Hinv(s);
MATHEMATICA
nmax = 20; CoefficientList[Series[1/(E^x*(1 + 3*x + x^2)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2018 *)
CROSSREFS
Cf. A302870.
Sequence in context: A058863 A378090 A192840 * A292971 A317967 A186117
KEYWORD
sign
AUTHOR
N. J. A. Sloane and William F. Keigher, Apr 12 2018
STATUS
approved