login
A302016
Expansion of 1/(1 - x - x^2/(1 + x^2/(1 + x^3/(1 + x^4/(1 + x^5/(1 + ...)))))), a continued fraction.
2
1, 1, 2, 3, 4, 6, 9, 14, 21, 31, 46, 68, 102, 153, 229, 342, 510, 761, 1136, 1697, 2535, 3786, 5653, 8441, 12605, 18824, 28112, 41981, 62691, 93617, 139800, 208768, 311761, 465564, 695242, 1038226, 1550415, 2315284, 3457489, 5163181, 7710344, 11514102, 17194374, 25676907, 38344147
OFFSET
0,3
LINKS
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
FORMULA
G.f.: 1/(1 - x*Product_{k>=1} (1 - x^(5*k-2))*(1 - x^(5*k-3))/((1 - x^(5*k-1))*(1 - x^(5*k-4)))).
a(0) = 1; a(n) = Sum_{k=1..n} A003823(k-1)*a(n-k).
a(n) ~ c / r^n, where r = 0.669643458685499460127124120930664114507093547265881... is the root of the equation x*QPochhammer[x^2, x^5]*QPochhammer[x^3, x^5] = QPochhammer[x, x^5]*QPochhammer[x^4, x^5] and c = 0.833333547701931811823757549354805979633827853516233646128015838266... - Vaclav Kotesovec, Jun 08 2019
MATHEMATICA
nmax = 44; CoefficientList[Series[1/(1 - x - x^2/(1 + ContinuedFractionK[x^k, 1, {k, 2, nmax}])), {x, 0, nmax}], x]
nmax = 44; CoefficientList[Series[1/(1 - x QPochhammer[x^2, x^5] QPochhammer[x^3, x^5]/(QPochhammer[x, x^5] QPochhammer[x^4, x^5])), {x, 0, nmax}], x]
CROSSREFS
Antidiagonal sums of A291678.
Sequence in context: A039884 A240496 A212464 * A078620 A073941 A005428
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 30 2018
STATUS
approved