login
A291678
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of k-th power of continued fraction 1 + x/(1 + x^2/(1 + x^3/(1 + x^4/(1 + x^5/(1 + ...))))).
3
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, -1, 0, 1, 4, 3, -2, 0, 0, 1, 5, 6, -2, -2, 1, 0, 1, 6, 10, 0, -6, 2, 1, 0, 1, 7, 15, 5, -11, 0, 5, -1, 0, 1, 8, 21, 14, -15, -8, 12, 0, -2, 0, 1, 9, 28, 28, -15, -24, 18, 9, -8, 0, 0, 1, 10, 36, 48, -7, -48, 15, 32, -15, -6, 2
OFFSET
0,8
LINKS
FORMULA
G.f. of column k: Product_{j>=1} ((1 - x^(5*j-2))*(1 - x^(5*j-3)) / ((1 - x^(5*j-1))*(1 - x^(5*j-4))))^k.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, ...
0, 0, 1, 3, 6, ...
0, -1, -2, -2, 0, ...
0, 0, -2, -6, -11, ...
CROSSREFS
Columns k=0..4 give A000007, A003823, A285442, A285443, A285444.
Rows n=0..1 give A000012, A001477.
Main diagonal gives A291679.
Antidiagonal sums give A302016.
Cf. A286509.
Sequence in context: A275001 A290975 A367145 * A286180 A291701 A286352
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Aug 29 2017
STATUS
approved