login
A301761
Number of ways to choose a rooted partition of each part in a constant rooted partition of n.
1
1, 1, 2, 3, 5, 6, 13, 12, 26, 31, 57, 43, 150, 78, 224, 293, 484, 232, 1190, 386, 2260, 2087, 2558, 1003, 11154, 4701, 7889, 13597, 30041, 3719, 83248, 5605, 95006, 84486, 63506, 251487, 654394, 17978, 169864, 490741, 2290336, 37339, 4079503, 53175, 3979370
OFFSET
1,3
COMMENTS
A rooted partition of n is an integer partition of n - 1.
LINKS
FORMULA
a(n) = Sum_{d | n-1} A000041((n-1)/d-1)^d for n > 1. - Andrew Howroyd, Aug 26 2018
EXAMPLE
The a(7) = 13 rooted twice-partitions:
(5), (41), (32), (311), (221), (2111), (11111),
(2)(2), (2)(11), (11)(2), (11)(11),
(1)(1)(1),
()()()()()().
MATHEMATICA
Table[Sum[PartitionsP[n/d-1]^d, {d, Divisors[n]}], {n, 50}]
PROG
(PARI) a(n)=if(n==1, 1, sumdiv(n-1, d, numbpart((n-1)/d-1)^d)) \\ Andrew Howroyd, Aug 26 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 26 2018
STATUS
approved