login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301669
T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2 or 4 horizontally or vertically adjacent elements, with upper left element zero.
7
0, 1, 1, 1, 3, 1, 2, 10, 10, 2, 3, 23, 30, 23, 3, 5, 61, 118, 118, 61, 5, 8, 162, 407, 564, 407, 162, 8, 13, 421, 1498, 2793, 2793, 1498, 421, 13, 21, 1103, 5289, 14394, 21224, 14394, 5289, 1103, 21, 34, 2890, 19184, 71564, 146841, 146841, 71564, 19184, 2890, 34, 55
OFFSET
1,5
COMMENTS
Table starts
..0....1.....1.......2........3..........5...........8............13
..1....3....10......23.......61........162.........421..........1103
..1...10....30.....118......407.......1498........5289.........19184
..2...23...118.....564.....2793......14394.......71564........359659
..3...61...407....2793....21224.....146841.....1073621.......7703565
..5..162..1498...14394...146841....1537496....15498505.....159497778
..8..421..5289...71564..1073621...15498505...225780260....3307561389
.13.1103.19184..359659..7703565..159497778..3307561389...68862687289
.21.2890.68832.1808256.55506215.1631501428.48158543096.1434208027966
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) +a(n-2) +2*a(n-3) -a(n-4)
k=3: [order 20]
k=4: [order 70]
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..1. .0..0..1..1. .0..0..0..1. .0..1..1..1. .0..0..1..1
..0..1..0..1. .1..0..1..0. .1..1..1..1. .0..0..0..0. .1..1..0..1
..1..1..0..0. .1..0..0..0. .1..0..0..0. .1..1..1..0. .0..0..0..0
..1..0..1..1. .1..1..1..1. .0..1..1..0. .1..0..1..0. .0..1..0..1
..1..0..0..1. .0..0..0..1. .0..0..1..0. .1..0..1..0. .0..1..1..1
CROSSREFS
Column 1 is A000045(n-1).
Column 2 is A185828.
Sequence in context: A316757 A055450 A185835 * A300427 A300689 A300612
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 25 2018
STATUS
approved