login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185828
Half the number of n X 2 binary arrays with every element equal to exactly one or two of its horizontal and vertical neighbors.
7
1, 3, 10, 23, 61, 162, 421, 1103, 2890, 7563, 19801, 51842, 135721, 355323, 930250, 2435423, 6376021, 16692642, 43701901, 114413063, 299537290, 784198803, 2053059121, 5374978562, 14071876561, 36840651123, 96450076810, 252509579303
OFFSET
1,2
COMMENTS
Column 2 of A185835.
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + a(n-2) + 2*a(n-3) - a(n-4).
a(n) = n*Sum_{k=0..n-1} C(2n-2k, 2k)/(n-k). - Paul D. Hanna, Mar 19 2011
L.g.f.: Sum_{n>=1} a(n)*x^n/n = -log((1+x+x^2)*(1-3*x+x^2))/2. - Paul D. Hanna, Mar 19 2011
Logarithmic derivative of A051286, which is the Whitney number of level n of the lattice of the ideals of the fence of order 2n. - Paul D. Hanna, Mar 19 2011
Empirical g.f.: x*(1+x+3*x^2-2*x^3)/(1+x+x^2)/(1-3*x+x^2). - Colin Barker, Feb 22 2012
Empirical: a(n) = Sum_{k=0..floor(n/2)} A084534(n, 2*k). - Johannes W. Meijer, Jun 17 2018
Empirical: a(n) = A100886(2n). - Wojciech Florek, Jan 26 2020
EXAMPLE
Some solutions for 4 X 2 with a(1,1)=0:
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 1
0 1 0 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1
0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1
The logarithmic g.f. begins:
L(x) = x + 3*x^2/2 + 10*x^3/3 + 23*x^4/4 + 61*x^5/5 + 162*x^6/6 + ..., where
exp(L(x)) = 1 + x + 2*x^2 + 5*x^3 + 11*x^4 + 26*x^5 + 63*x^6 + ... + A051286(n)*x^n/n + ... - Paul D. Hanna, Mar 19 2011
MAPLE
a := proc(n): n*add(binomial(2*n-2*k, 2*k)/(n-k), k=0..n-1) end: seq(a(n), n=1..28); # Johannes W. Meijer, Jun 18 2018
PROG
(PARI) {a(n)=n*sum(k=0, n-1, binomial(2*n-2*k, 2*k)/(n-k))} /* Paul D. Hanna, Mar 19 2011 */
(PARI) {a(n)=n*polcoeff(-log( (1+x+x^2)*(1-3*x+x^2) +x*O(x^n))/2, n)} /* Paul D. Hanna, Mar 19 2011 */
CROSSREFS
Cf. A051286 (exp), A180662 (Fi1).
Sequence in context: A115982 A167243 A316403 * A134438 A092255 A105861
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 05 2011
STATUS
approved