OFFSET
1,12
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
LINKS
FORMULA
a(1) = 0; for n > 1, if A001222(n) <= 2 [when n is a prime or semiprime], a(n) = 1, otherwise, a(n) = Sum_{p|n} Sum_{q|n, q>=(p+[p^2 does not divide n])} a(prime(primepi(p)+primepi(q)) * (n/(p*q))), where p ranges over all distinct primes dividing n, and q also ranges over primes dividing n, but with condition that q > p if p is a unitary prime factor of n, otherwise q >= p. Here primepi = A000720. - Antti Karttunen, Oct 07 2018
EXAMPLE
The a(36) = 6 maximal chains are the rows:
(2211)<(222)<(42)<(6)
(2211)<(411)<(42)<(6)
(2211)<(411)<(51)<(6)
(2211)<(321)<(42)<(6)
(2211)<(321)<(51)<(6)
(2211)<(321)<(33)<(6)
MATHEMATICA
chc[ptn_]:=If[Length[ptn]===1, 1, Total[chc/@Union[ReplaceList[ptn, {a___, x_, b___, y_, c___}:>Sort[{x+y, a, b, c}, Greater]]]]];
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[chc[Reverse[primeMS[n]]], {n, 100}]
PROG
(PARI) A300385(n) = if(1==n, 0, if(bigomega(n)<=2, 1, my(f=factor(n), u = #f~, s = 0); for(i=1, u, for(j=i+(1==f[i, 2]), u, s += A300385((n/(f[i, 1]*f[j, 1])*prime(primepi(f[i, 1])+primepi(f[j, 1])))))); (s))); \\ Antti Karttunen, Oct 06 2018
(PARI)
memoA300385 = Map();
A300385(n) = if(1==n, 0, if(bigomega(n)<=2, 1, if(mapisdefined(memoA300385, n), mapget(memoA300385, n), my(f=factor(n), u = #f~, s = 0); for(i=1, u, for(j=i+(1==f[i, 2]), u, s += A300385(prime(primepi(f[i, 1])+primepi(f[j, 1]))*(n/(f[i, 1]*f[j, 1]))))); mapput(memoA300385, n, s); (s)))); \\ (A memoized implementation). - Antti Karttunen, Oct 07 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 04 2018
EXTENSIONS
More terms from Antti Karttunen, Oct 06 2018
STATUS
approved