Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Oct 05 2018 07:58:39
%S 0,0,0,1,2,1,0,0,0,1,2,1,0,0,0,1,2,1,0,0,0,1,2,1,0,0,0,1,2,1,0,0,0,1,
%T 2,1,0,0,0,1,2,1,0,0,0,1,2,1,0,0,0,1,2,1,0,0,0,1,2,1,0,0,0,1,2,1,0,0,
%U 0,1,2,1,0,0,0,1,2,1,0,0,0,1,2,1
%N Period 6: repeat [0, 0, 0, 1, 2, 1].
%C Underlying A174257(n+1), n >= 0.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1,1,-1,1).
%F a(n) = floor((n (mod 6))/3) + floor((n + 1 (mod 6))/5), n >= 0.
%F G.f.: x^3*(1 + x)^2/(1 - x^6) = -x^3*(1+x)/(x-1)/(1+x+x^2)/(1-x+x^2).
%F a(n) = (4 - 3*cos(n*Pi/3) - cos(2*n*Pi/3) - 3*sqrt(3)*sin(n*Pi/3) + sqrt(3)*sin(2*n*Pi/3))/6. - _Wesley Ivan Hurt_, Oct 04 2018
%t PadRight[{}, 102, {0, 0, 0, 1, 2, 1}] (* or *)
%t CoefficientList[Series[x^3*(1 + x)^2/(1 - x^6), {x, 0, 102}], x] (* _Michael De Vlieger_, Feb 25 2018 *)
%o (PARI) a(n) = my(v=[0, 0, 1, 2, 1]); v[if(n%6==0, 1, n%6)] \\ _Felix Fröhlich_, Feb 24 2018
%o (PARI) concat(vector(3), Vec(x^3*(1 + x)^2/(1 - x^6) + O(x^40))) \\ _Felix Fröhlich_, Feb 25 2018
%Y Cf. A174257, A300067.
%K nonn,easy
%O 0,5
%A _Wolfdieter Lang_, Feb 24 2018