login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300069
Period 6: repeat [0, 0, 0, 1, 2, 1].
3
0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1
OFFSET
0,5
COMMENTS
Underlying A174257(n+1), n >= 0.
FORMULA
a(n) = floor((n (mod 6))/3) + floor((n + 1 (mod 6))/5), n >= 0.
G.f.: x^3*(1 + x)^2/(1 - x^6) = -x^3*(1+x)/(x-1)/(1+x+x^2)/(1-x+x^2).
a(n) = (4 - 3*cos(n*Pi/3) - cos(2*n*Pi/3) - 3*sqrt(3)*sin(n*Pi/3) + sqrt(3)*sin(2*n*Pi/3))/6. - Wesley Ivan Hurt, Oct 04 2018
MATHEMATICA
PadRight[{}, 102, {0, 0, 0, 1, 2, 1}] (* or *)
CoefficientList[Series[x^3*(1 + x)^2/(1 - x^6), {x, 0, 102}], x] (* Michael De Vlieger, Feb 25 2018 *)
PROG
(PARI) a(n) = my(v=[0, 0, 1, 2, 1]); v[if(n%6==0, 1, n%6)] \\ Felix Fröhlich, Feb 24 2018
(PARI) concat(vector(3), Vec(x^3*(1 + x)^2/(1 - x^6) + O(x^40))) \\ Felix Fröhlich, Feb 25 2018
CROSSREFS
Sequence in context: A304871 A362370 A117907 * A284586 A281244 A284585
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 24 2018
STATUS
approved