login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

List of primes prime(r) such that prime(r)-prime(r-1)=30, prime(r-1)-prime(r-2)=8 and prime(r-2)-prime(r-3)=6.
2

%I #31 May 13 2020 02:27:31

%S 4327,91621,111697,123001,190027,240997,243517,244291,300277,309667,

%T 315937,317827,362137,393517,440131,457087,467587,517861,554167,

%U 567097,590071,609571,617917,640771,651727,653311,719101,776551,788071,793591,804157,809491,812431,850177,861391,1007857,1070287

%N List of primes prime(r) such that prime(r)-prime(r-1)=30, prime(r-1)-prime(r-2)=8 and prime(r-2)-prime(r-3)=6.

%C These are the primes of a056240-type 3(30,8,6); k=3 (see definition in A293652).

%C A prime of a056240-type 3 is a prime, prime(r)>3, such that prime(r-3) is the greatest prime factor of the smallest composite number whose prime divisors (with multiplicity) sum to prime(r).

%C Conjecture: Sequence has infinitely many terms.

%C Note: p~3(30,8,6) is one particular form of a prime of a056240-type 3; there are others, e.g., 3(30,12,2), 3(24,6,2), 3(36,6,4), 3(38,10,2), etc. All such prime sequences are also conjectured to produce infinitely many terms.

%C All terms == 1 (mod 3). - _Robert Israel_, May 13 2020

%H Robert Israel, <a href="/A299704/b299704.txt">Table of n, a(n) for n = 1..2000</a>

%F For every prime(r) in this sequence A288814(prime(r)) = prime(r-3)*A056240(prime(r) - prime(r-3)) = prime(r-3)*A288814(prime(r) - prime(r-3)).

%e a(1)=4327=prime(591), the first prime of a056240-type 3. Prime(590)=4297, prime(589)=4289, prime(588)=4283. 4327-4297=30, 4297-4289=8, 4289-4283=6.

%p N:=2000000:

%p for X from 100 to N do

%p if isprime(X) then

%p A:=prevprime(X);

%p B:=prevprime(A);

%p C:=prevprime(B);

%p a:=X-A;

%p b:=A-B;

%p c:=B-C;

%p if a=30 and b=8 and c=6 then print(X);

%p end if

%p end if

%p end if

%p end do

%t With[{s = Partition[Prime@ Range[10^5], 4, 1]}, Select[s, Differences@ # == {6, 8, 30} &][[All, -1]]] (* _Michael De Vlieger_, Feb 18 2018 *)

%Y Cf. A056240, A288814, A293652, A295185, A299110.

%K nonn

%O 1,1

%A _David James Sycamore_, Feb 17 2018