login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299704
List of primes prime(r) such that prime(r)-prime(r-1)=30, prime(r-1)-prime(r-2)=8 and prime(r-2)-prime(r-3)=6.
2
4327, 91621, 111697, 123001, 190027, 240997, 243517, 244291, 300277, 309667, 315937, 317827, 362137, 393517, 440131, 457087, 467587, 517861, 554167, 567097, 590071, 609571, 617917, 640771, 651727, 653311, 719101, 776551, 788071, 793591, 804157, 809491, 812431, 850177, 861391, 1007857, 1070287
OFFSET
1,1
COMMENTS
These are the primes of a056240-type 3(30,8,6); k=3 (see definition in A293652).
A prime of a056240-type 3 is a prime, prime(r)>3, such that prime(r-3) is the greatest prime factor of the smallest composite number whose prime divisors (with multiplicity) sum to prime(r).
Conjecture: Sequence has infinitely many terms.
Note: p~3(30,8,6) is one particular form of a prime of a056240-type 3; there are others, e.g., 3(30,12,2), 3(24,6,2), 3(36,6,4), 3(38,10,2), etc. All such prime sequences are also conjectured to produce infinitely many terms.
All terms == 1 (mod 3). - Robert Israel, May 13 2020
LINKS
FORMULA
For every prime(r) in this sequence A288814(prime(r)) = prime(r-3)*A056240(prime(r) - prime(r-3)) = prime(r-3)*A288814(prime(r) - prime(r-3)).
EXAMPLE
a(1)=4327=prime(591), the first prime of a056240-type 3. Prime(590)=4297, prime(589)=4289, prime(588)=4283. 4327-4297=30, 4297-4289=8, 4289-4283=6.
MAPLE
N:=2000000:
for X from 100 to N do
if isprime(X) then
A:=prevprime(X);
B:=prevprime(A);
C:=prevprime(B);
a:=X-A;
b:=A-B;
c:=B-C;
if a=30 and b=8 and c=6 then print(X);
end if
end if
end if
end do
MATHEMATICA
With[{s = Partition[Prime@ Range[10^5], 4, 1]}, Select[s, Differences@ # == {6, 8, 30} &][[All, -1]]] (* Michael De Vlieger, Feb 18 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved