OFFSET
1,2
COMMENTS
The Lambert W function satisfies the functional equation e^(W(x) + W(y)) = x*y/(W(x)*W(y)) for x and y greater than -1/e, so that e^(2*W(1/3)) = (1/9)/(W(1/3))^2. See A299613 for a guide to related constants.
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function
EXAMPLE
e^(2*W(1/3)) = 1.674065846464880772226081114...
MATHEMATICA
w[x_] := ProductLog[x]; x = 1/3; y = 1/3; N[E^(w[x] + w[y]), 130] (* A299629 *)
PROG
(PARI) exp(2*lambertw(1/3)) \\ Altug Alkan, Mar 13 2018
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Mar 13 2018
STATUS
approved