login
A298945
a(n) = F_{c-(5/c)} mod c^2, where c is the n-th composite number, F_i = A000045(i) and (5/c) is the Kronecker symbol.
3
2, 5, 34, 21, 55, 89, 37, 160, 98, 293, 365, 150, 101, 433, 25, 665, 696, 709, 440, 994, 883, 1090, 765, 1241, 230, 1511, 1355, 257, 805, 20, 1382, 289, 2275, 1525, 1414, 821, 1373, 1820, 685, 1504, 2177, 720, 3102, 1302, 1250, 190, 2425, 2178, 2832, 3935
OFFSET
1,1
COMMENTS
Composites c where a(n) = 0 could be called "Wall-Sun-Sun pseudoprimes" or "Fibonacci-Wieferich pseudoprimes". Do any such composites exist?
Any such c would have to be a term of A241505.
LINKS
MAPLE
N:= 100: # to get a(1)..a(N)
count:= 0: R:= NULL:
for n from 4 while count < N do
if not isprime(n) then
count:= count+1;
R:= R, combinat:-fibonacci(n - numtheory:-jacobi(5, n)) mod n^2;
fi
od:
R; # Robert Israel, Feb 02 2018
MATHEMATICA
composite[n_Integer] := FixedPoint[n + PrimePi@ # + 1 &, n + PrimePi@ n + 1] ; Array[With[{c = composite@ #}, Mod[Fibonacci[c - KroneckerSymbol[5, c]], c^2]] &, 50] (* Michael De Vlieger, Jan 31 2018, composite function by Robert G. Wilson v at A066277 *)
PROG
(PARI) forcomposite(c=1, 200, print1(lift(Mod(fibonacci(c-kronecker(5, c)), c^2)), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Jan 30 2018
STATUS
approved